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A classical lattice gas model with two-body nearest neighbor interactions and 
without periodic ground-state configurations is presented. The main result is the 
existence of a decreasing sequence of temperatures for which the Gibbs states 
have arbitrarily long periods. It is possible that the sequence accumulates at 
nonzero temperature, giving rise to a quasiperiodic equilibrium state. 
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1. I N T R O D U C T I O N  

I would like to address the problem of low-temperature stability of non- 
periodic structures. I will discuss a system of many interacting particles 
such that the configurations with minimal energy density, the so-called 
ground states, are nonperiodic. Low-temperature behavior of the system 
results from the competition between energy and entropy, i.e., the mini- 
mization of the free energy. Is the entropy contribution big enough to 
destroy nonperiodic structures or are there equilibrium phases which 
are small perturbations of nonperiodic ground states? This question is 
especially interesting in connection with the recently discovered 
quasicrystals/1 3~ 

The model is a classical lattice gas. More precisely, every site of the 
simple cubic lattice can be occupied by one of several different particles. 
The particles interact through two-body nearest neighbor potentials. The 
model does not have periodic ground-state configurations. Although non- 
periodic, they are not, however, completely chaotic. They exhibit long- 
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range positional order in the sense that states at distant regions are 
correlated. In fact, ground-state configurations possess highly ordered 
structures. If a certain fraction of particles is ignored, the rest of a ground- 
state configuration is periodic: the smaller the fraction, the larger the 
period. 

One would like to see how much of this structure survives at low 
temperatures. The main result is the following: 

T h e o r e m  1. There is a decreasing sequence of temperatures Tn 
such that if T <  Tn, then there exists a Gibbs state with period at least 2 . 6  n 
in both directions. 

The equilibrium state in Theorem 1 is a small perturbation of a 
periodic configuration present in a ground-state configuration in the form 
described above. The translational symmetry is broken. The sequence of 
temperatures can accumulate at zero or at some positive temperature. The 
first possibility means that every time Tn decreases to T,+I  the period of 
the equilibrium state increases by a factor of 6. In the second case we have 
an example of an equilibrium quasicrystal. We are unable to determine 
which possibility actually happens. An analogous theorem was already 
proven for an exponentially decaying interaction. (4~ Here it holds in the 
case of the nearest n6ighbor interaction. The result was already announced 
in a letter. (5) Here I give the complete proof. 

In Section 2 I describe the main features of Robinson's nonperiodic 
tilings of the plane, construct a classical lattice gas model out of it, and 
outline the modified Peierls argument. In Section 3 the model is described 
in full detail. The proof of Theorem 1 follows in Section 4. Section 5 
contains a short discussion. 

2. T IL INGS A N D  THE PEIERLS A R G U M E N T  

The present example of a classical lattice gas model is based on Robin- 
son's tiles, (6 8~ which is a family of 56 squarelike tiles which tile the plane 
only in a nonperiodic fashion. This can be translated into a lattice gas 
model in the following way first introduced by Radin. (4'9 14) Every site of 
the square lattice can be occupied by one of the 56 different particles-tiles. 
Two nearest neighbor particles which do not "match" contribute positi,~e 
energy; otherwise, the energy is zero. Such a model obviously does not 
have periodic ground-state configurations. To obtain a three-dimensional 
model, add the nearest neighbor interaction along the third axis which 
favors the pairs of identical particles. The ground-state configurations are 
the previous ones repeated in the third direction. 

I now describe the main features of Robinson's nonperiodic tilings. I 
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will concentrate on the lattice positions of four particular tiles denoted by 
L, [-, d, and 1 and referred to as crosses. Every odd-odd  position on the Z 2 
lattice is occupied by these tiles in relative orientations as in Fig. 1. They 
form a periodic configuration with period 4. Then in the center of each 
"square" one has to put again a cross such that the previous pattern 
reproduces, but this time with period8. Continuing this procedure 
infinitely many times, we obtain a nonperiodic configuration. It has built-in 
periodic configurations of period 2 n, n ~> 2, on sublattices of Z 2 as shown 
in Fig. 2. 

Using the Peierls argument, ~5 17) one would like to construct an equi- 
librium phase which is a small perturbation of a periodic configuration 
with period 2 n if the temperature is small enough: T <  Tn. Imagine a finite- 
volume A excitation ]( from G, one of the nonperiodic ground-state con- 
figurations. Let a be a lattice site belonging to the sublattice Ln of Z 2 
associated with the period 2 n of G. Let a be occupied by a different particle 
in the excited configuration X than in G. Now every walk on Ln which con- 
nects any site outsite A with a has at least one pair of adjacent sites with 
particles which are not both crosses or they are both crosses with the 
relative orientation different from these in Fig. 1. This means that at a dis- 
tance at most 2 n from this pair there is a broken b o n d - - a  nearest neighbor 
pair of mismatched particles. This leads to the following useful definitions. 
By a contour of a configuration I mean a connected component  of a union 
of irregular squares. A square of size 2 n+l is irregular if it contains a 
broken bond. Now it follows that a belongs to a contour or one of its 
interiors. By the very definition of the contour the energy of a contour is 
proportional  to its a rea - - the  Peierls condition is satisfied. The number of 
all possible contours enclosing any given site grows polynomially with their 

F- --1 F -! 

L _i L J 

F- I I --1 

L _1 L _1 
Fig. 1. Relative orientation of crosses. 
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Fig. 2. Robinson's nonperiodic ground state configuration. 

areas. If one could prove that the probability of any contour is bounded by 
e x p E - # A ( n ) ] - - t h e  Peierls bound- -where  /3 is the inverse temperature 
and A(n) is the area of the contour, then the standard Peierls argument, 
showing that the probability of the site a being occupied by a different 
particle than in G is very small for large enough #, would finish the 
proof  of Theorem 1. Unfortunately, in order to prove the Peierls exponen- 
tial bound, one has to modify Robinson's tiles a little bit. 

3. D E S C R I P T I O N  O F  T H E  M O D E L  

I describe here the modification of Robinson's tiles. (6 87 Every tile is a 
square with several levels of markings. Two adjacent tiles match if 
markings at every level match. In the case of colorings, the colors should 
match in the prescribed manner. If the markings consist of lines, we cannot 
break them throughout any tiling. The markings of the first level are 
presented in Fig. 3. The first tile on the left is called a cross; the remaining 
ones are called arms. Allowing rotations, we have four crosses, four 
horizontal arms, and four vertical arms. 

All tiles are furnished with one of the four parity markings shown in 
Fig. 4. The crosses are combined with the parity marking at the lower left 
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Fig. 3. Crosses and arms. 

in Fig. 4. Vertical arms can be combined with the marking at the upper left 
and horizontal arms with the marking at the lower right. All tiles may be 
combined with the remaining marking. Two parity markings match if 
arrow head meets arrow tail. Observe that if the plane is tiled with tiles 
with such markings, then these must alternate both horizontally and verti- 
cally in the manner shown in Fig. 4. The markings described so far force 
any tiling to have the pattern of crosses shown in Fig. 1. 

Now are would like crosses of higher scale to appear not in every 
square as in Fig. 2, but in the center of every third square as in Fig. 5. The 
reason is that in order to get the Peierls exponential bound on the 
probability of the occurrence of a contour connected with one scale, the 
higher scales should be sparser so as not to interfere energetically. This will 
be evident in the proof of Proposition 3. To achieve that, let us color the 
edges of crosses. Both horizontal and both vertical edges should be colored 
in the same way: either green, red, or blue. We have therefore nine different 
colored crosses. One would like colors of crosses to alternate both horizon- 
tally and vertically in the above order and then to have a cross in the red- 
blue square only as in Fig. 6. To force the desired sequence of colored 

I::r IX] 
Fig. 4. Parity markings. 

822/58/5-6-23 
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Fig. 5. Modified nonperiodic ground state configuration. 

crosses, color the edges of the arms tiles as well. In distinction to crosses, 
only two edges perpendicular to the markings of the first level are colored. 
To enforce blue-green sequence, one has yellow arms; yellow matches itself 
and matches blue to the left or bot tom and green to the right or top as in 
Fig. 7. Similarly, for green-red sequence one has orange arms; orange 
matches itself and matches green to the left or bot tom and red to the right 
or top. Finally, for red-blue sequence one has red arms, blue arms, and 
two special arms: a horizontal arm with the red left edge and blue right one 
and a vertical arm with the red bot tom edge and blue top one; all colors 
match themselves in a natural way. These special arms will play an impor- 
tant role in forcing crosses to appear  in the center of every red blue square. 
To have the horizontal green red-blue sequence repeating vertically and 
the green-red-blue vertical sequence repeating horizontally, I introduce a 
second level of colorings matching themselves in a natural way. First-level 
marking lines of a cross get colors of edges parallel to them. First-level 
arms marking lines can get green, red, or blue color in an arbitrary way. 
This finally forces a pattern of crosses shown in Fig. 6. To force crosses to 
appear in the center of every red-blue square, I introduce the last level of 
markings. A horizontal, second-level red, lower double arm and a horizon- 
tal, second-level blue, upper double arm with the red left edge and the blue 
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Fig. 6. C o l o r i n g s  of  crosses .  

right edge are equipped with a half line as in Fig. 8 and have in addition 
all the markings of a vertical arm. A vertical second-level red, left double 
arm and a vertical, second-level blue, right double arm with the red bottom 
edge and the blue top edge are marked similarly. Every other horizon- 
tal/vertical arm can be equipped with the optional middle horizontal/verti- 
cal line and every cross with the upper right parity with two crossed lines 
as shown in Fig. 8. This will force a cross to appear in the center of a red- 
blue square to form a structure shown in Fig. 9. The remaining special 
horizontal/vertical red-blue arms either have all the markings of a verti- 
cal/horizontal arm or the other sides are left plain as in all remaining arms. 
Finally, I introduce a plain square tile with the upper right parity marking. 

Counting all combinations of markings, there are 72 crosses, 384 
special arms forcing crosses in the middle of chosen squares, 3880 other 
special arms, 192 remaining arms, and one plain tile; altogether, 4529 tiles- 
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Fig. 7. Colorings of arms. 
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particles. I made no effort to minimize the number of particles. The most 
important  fact is that there are finitely many of them. 

Once the crosses are forced to appear, they are arranged in a fixed 
pattern. It repeats infinitely many times, producing a nonperiodic tiling G 
of the plane. This defines in a natural way an infinite sequence of square 
lattices Ln c Z 2 with lattice spacing 2 . 6  " -  1, n = 1,..., such that if a E Ln, 
then G(a) is a cross and the crosses form a periodic configuration with 
period 6 on Ln, hence 2 . 6  ~ true period. 

I .'." 

Fig. 8. 

F L f '1 
Additional markings. 
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Fig. 9. Forcing a cross in the center of a big square. 

In the next section I will prove the existence of Gibbs states which are 
small perturbations of the above-described periodic configurations. 

Now I introduce the nearest neighbor two-body interaction U between 
particles-tiles. If a and b are nearest neighbors on the square lattice and 
X(a) and X(b) are particles at a and b, respectively, then 

U~b = U(X(a), X(b))= {O1 if X(a) and X(b) match 

otherwise 

The Hamiltonian in the finite volume A can be written as follows: 

HA = ~ Uab 
(a,b) 

and the relative Hamiltonian 

H(X[ Y)= ~ (U~h(X)-- U~a(Y)) 
(a,b)  

where X and Y are two infinite-volume configurations which differ only on 
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a finite subset of the lattice. All ground-state configurations of this lattice 
gas model correspond to the nonperiodic tilings. 

Observe that the nearest neighbor interaction based on the tiles just 
described is not isotropic. Increasing the number of tiles, one can construct 
an isotropic interaction with the same structure of ground-state configura- 
tions. 

4. THE PROOF 

Let G be one of the nonperiodic ground-state configurations of the 
model, A be a finite subset of the square lattice, and ( . ) A  a be a finite- 
volume Gibbs state with G boundary conditions. Let ( - ) a  be a cluster 
point of ( . ) A  a when A--*Z 2, a aLn, and Pr~ be the projection on all 
configurations which are different from G(a) at a, where Ln is a sublattice 
described in the end of the previous section. I will prove the following 
theorem. 

T h e o r e m  2. There is an increasing sequence of inverse tem- 
peratures fin such that if fi > ft,, then ( P r ~ )  c < ~(fi) ~ 0 when fl --, oe. 

The theorem says that if fl > fin, then the infinite-volume limit Gibbs 
state with G boundary conditions is a small perturbation of a periodic 
configuration of period 2 �9 6 n. This means that the Gibbs state must either 
have period at least 2 . 6  n or be totally nonperiodic. 

I will follow closely the proof of the analogous theorem for an 
exponentially decaying interaction. (4~ 

I begin with introducing the contours. If S is the family of all tiles, and 
IS[ =4529, then ~r = S z2 is the infinite-volume configuration space of the 
system, 

Let X e  ~rA~, 

X(a) = G(a) if a e Z 2 - A} 

~ (X)={(a ,b ) :  U(X(a),(X(b))>O} 

Vm(a)={baZ2: dist(a,b)<~m} 

Fn(X) = U V2 6"(a) 
(a,b)eT(X) 

[Fn(X)[ =card{(a ,  b): (a, b)~7(X)} 

Fn(X )" can be decomposed into a finite number of connected components 
called the contours of the configuration X. Each such contour ~ divides the 
lattice into one infinite connected component Ext ~, called the exterior of 
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the contour, and a finite number of disjoint connected components Int~,  
called the interiors of the contour, and the contour itself. A contour which 
is not contained in any interior of any other contour is called an exterior 
contour. Denote by F e ( x )  the set of all exterior contours of the configura- 
tion X. 

Proposition 1. If X~Y'A G and X ( a ) v a G ( a ) ,  where a e L n ,  then a 
belongs either to one of the exterior contours of the configuration X or to 
an interior of one of the exterior contours. 

One has the following bound for (Pr~ 6 )A G. 

f lH(XI  G) 2_. o G e X ~ Pr  a ~ A 
G G (Pr~ >A -- 

~ x  e ~'6Ae-- ~H(Xl G) 

=_ y Z 
l - - 1  ct; [~] -- / 

~)~ X ~ ~2"~ e - f l g (  Xi  G) 

(1) 

where the summation is over all connected sets c~ of Z 2 such that a belongs 
either to ~ or to its interior. P(~) is the probability of ~ being the exterior 
contour for some configuration in XA G. 

Observe that a projection o n  Lm,  m <~ n, of every interior of every con- 
tour is a piece of a translated ground-state configuration G. Now let us 
construct a Peierls transformation. It translates a configuration on every 
interior of an exterior contour F ] ( X )  and puts a ground-state configuration 
G on a contour itself in such a way that the contour is "erased": all pieces 
fit on Lm,  m <<. n. Formally: 

Go: . F e T: ;G .(X)} 

T ( X )  = X*, where X* is defined as follows: 

X ~ E x t  ,~ : X i E x t  a ,  X * ~  : G ] a ,  X~tnti: ~ : ~ X l i n t , ~  ( 2 )  

where i runs over all interiors of :~, and vi are lattice translations such that 
the orientations of crosses of X* are the same as those of G on the part of 
every lattice Lm,  m = 1, 2,..., n, contained in Inticc 

Proposition 2: 

H(X* I G) <~ g ( x l  G) - [~1/2 

Proo f .  The present Peierls transformation certainly lowers the energy 
associated with L m ,  m <<. n, by Ic~]. However, it may introduce some misfits 
connected with higher sublattices. Because of the existence of plain edges 
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propagating in every two out of three corridors between crosses, the 
broken bond may be introduced at most in every second cube Vn(a). | 

One has the following estimate for the kernel of the Peierls transfor- 
mation. 

P r o p o s i t i o n  3. One has card(Ker T)~< (2.6~) t~t 45293262~1~1 

Proof. The number of finite disjoint connected components Intic~ is 
obviously bounded by [c~1/2. Then we have (2-&)2 possible translations v~. 
Finally, we have to take into account the boundary of Intic~ and the 
contour itself. This introduces the factor 45292(2"2"6~)21~1 | 

Combining (1) and Propositions 2 and 3 gives the following Peierls 
estimate. 

P r o p o s i t i o n  4: 

P(~) ~< (2.6~) I~t 45293262"1~1e -~1~1/2 

Proof." 
card(Ker T)-Zx* ~ T(p~s~) e pmx*lG~-~l~l/2 

P(~) ~< 
~ X *  ~ T(prGa~ "G) e --,8H(X*[G) 

~< (2- 6~) t~t 452932.62nlc~le ~1~[/2 | 

The following estimate was proven by Holsztynski and Slawny. (18) 

Proposition 5. The number of connected subsets [c~[ = l of Z 2 such 
that the fixed site of the lattice belongs either to c~ or to its interior and in 
addition ~ is a contour of some configuration is bounded above by 
[A(n) l +  B(n)] 2 C(n) 2t-2, where A(n), B(n), and C(n) depend only upon n. 

This shows that 

(Pr])Aa~< ~ [A(n)l-I- B(rt)] 2 C(n) 2t-2 (2.6n) L~I 45293262niXie ~l/2 (3) 
l 1 

uniformly in A. 
The series converges and goes to 0 when/~ --+ oe and hence Theorem 2 

is proven 

5. C O N C L U S I O N S  

The importance of the given example is that it gives strong evidence 
that finite-range interactions are capable of forcing nonperiodicity not only 
in ground states, but at low temperatures as well. It is an important open 
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problem to construct a quasiperiodic equilibrium state of many interacting 
particles at positive temperature. 

It was proven recently that classical lattice gas models with ordered 
but nonperiodic ground states are not that rare. In fact, they form a generic 
set in the space of summable interactions(19-21~; however, these results 
really only concern medium-range interactions, not finite range as 
described here. 
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